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Random Walker with Priors

Pixel nodes and edges:
static and known offline

Intensity prior nodes and edges: 
dynamic and updated online

• Random walker (RW) algorithm [1, 2]
segments images using user-given seed
pixels

• RW calculates random walk probabilities
on a weighted graph constructed from an
image, and includes intensity priors as
new nodes

• Without priors, [3] shows how to speed
this calculation using offline precomputa-
tion

• This allows the user to update seeds and
see the results interactively

• With intensity priors, the graph changes
as the seeds change, so a new precompu-
tation scheme is needed to maintain inter-
activity

Key Contributions
• By extending the precomputation

method from [3] to work with a dynamic
image graph, we achieve interactive
speeds while still incorporating intensity
priors

• Using additional precomputation, we
minimize the number of computations
between matrices of size O(# of unseeded
pixels).

• Code available at fastrw.cs.sfu.ca
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2D Results

Seeds Without Precomp.
Time taken = 0.552 s

K = 20, Dice = 0.585 K = 40, Dice = 0.962

Time taken = 0.043 s Time taken = 0.063 s

K = 80, Dice = 0.996 K = 160, Dice = 0.998

Time taken = 0.097 s Time taken = 0.178 s

A comparison of results with and without
precomputation. Note that for K = 80, our
method finds a segmentation with Dice sim-
ilarity coefficient 0.996 to the original RW in
about 1/6th the time.
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) Comparison of Algorithm Runtimes

Our Method w/ Additional Precomp.
Original Method
Our Method w/ Basic Precomp.

Runtimes of original and proposed methods.

3D Results

(a) Without Precomp. (b) With Precomp.

The CT scan of a femur, tibia, and patella
segmented with seeds placed only in the
tibia.The original RW finds (a) in 40.5 sec and
for K = 350, our method finds (b) with Dice
similarity coefficient 0.975 to (a) in 1.56 sec,
1/25th the time.

Noise Analysis
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K vs. Accuracy with Priors
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Noise SD = 0.2
Noise SD = 0.7

(a) Dice vs. K
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Our Method and the Original RW w/ Priors (K = 200)

 

 

(b) Dice vs. Noise
Effect of K and noise on segmentation accu-
racy. (a) compares the Dice similarity coeffi-
cient between the segmentations found using
the original method and our method. (b)
shows the Dice similarity coefficient between
the segmentations at varying levels of noise.
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